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Abstract—Edge computing facilitates the deployment of dis-
tributed AI applications, capable of processing video data in
real time. AI-assisted video analytics can provide valuable in-
formation and benefits in various domains. Face recognition,
object detection, or movement tracing are prominent examples
enabled by this technology. However, such mechanisms also entail
threats regarding privacy and security, for example if the video
contains identifiable persons. Therefore, adequate data protection
is an increasing concern in video analytics. AI-assisted data
protection mechanisms, such as face blurring, can help, but are
often computationally expensive. Additionally, the heterogeneous
hardware of end devices and the time-varying load on edge
services need to be considered. Therefore, such systems need
to adapt to react to changes during their operation, ensuring
that conflicting requirements on data protection, performance,
and accuracy are addressed in the best possible way. Sound
adaptation decisions require an understanding of the adaptation
options and their impact on different quality attributes. In this
paper, we identify factors that can be adapted in AI-assisted
data protection for video analytics using the example of a face
blurring pipeline. We measure the impact of these factors using
a heterogeneous edge computing hardware testbed. The results
show a large and complex adaptation space, with varied impacts
on data protection, performance, and accuracy.

Index Terms—edge computing, fog computing, artificial in-
telligence, data protection, anonymization, face blurring, Video
Analytics Pipeline

I. INTRODUCTION

Video feeds generated by distributed devices enable a vari-
ety of applications. For example, in smart cities, videos from
cameras can be used for traffic monitoring, accident reporting,
and law enforcement applications, among others [1]–[3]. In
some cases, also user-generated content may be available. E.g.,
in the case of an accident, videos taken by passers-by with
their smartphones may also aid the work of first responders.

Videos from public spaces may contain sensitive data asso-
ciated with special security or privacy requirements [4], [5].
For example, people’s faces or cars’ license plates are person-
ally identifiable information, and processing such information
is subject to data protection regulations, such as the General
Data Protection Regulation (GDPR) in the European Union
[6].

Recent advances in artificial intelligence (AI), particularly in
machine learning (ML), enable effective automatic video pro-
cessing [7]–[10]. AI can also help in satisfying data protection
requirements; e.g., faces and license plates can be automati-
cally detected by ML-based object detection algorithms, and
then anonymized by further video manipulation methods.

Usually, processing videos is very resource-intensive, but
the end devices producing the videos are resource-constrained.
Video processing may be offloaded to the cloud to benefit
from the virtually unlimited computational capacity of the
cloud. However, offloading to the cloud is associated with high
latency and high network load. A better solution is to deploy
devices – called edge nodes – with sufficient computational ca-
pability near the network edge. End devices can offload some
video processing functionality to nearby edge nodes, thereby
benefiting from low-latency access to computational capacity
without overloading the core network. With the appropriate
distribution of functionalities between end devices, edge nodes
and the cloud, optimal performance can be achieved [11].

A challenge for such systems is the dynamic variability
of their run-time environment [12]–[14]. For example, the
number of smartphones offloading video processing to an
edge node may change at run time. Also the capabilities of
the connected smartphones and the properties of the videos
to process can change over time. Thus, video processing
systems at the edge must be self-adaptive to be able to react
to changes at run time. Self-adaptation involves monitoring
the system and its environment, analyzing whether changes
threaten the satisfaction of the requirements, and the planning
and execution of adaptations if needed to ensure the continued
satisfaction of requirements [15]. For example, a smartphone
may be able to perform face anonymization locally as long as
the video contains only one face, but when the number of faces
in the video increases, the processing may have to be offloaded
to ensure proper operation. This requires an automatic run-time
adaptation of the face-anonymization pipeline.

To enable adaptations at run time, appropriate adaptation
rules have to be defined at design time, specifying what adap-
tation to perform in which situation. Existing approaches to
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End devices
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Fig. 1. Edge infrastructure in the considered use case

creating self-adaptive systems assume that the designer is able
to define the appropriate adaptation rules [16]. For defining
adaptation rules, it is crucial to understand i) what changes
in the environment may happen, ii) what self-adaptations the
system may perform, and iii) how those changes and self-
adaptations impact the relevant system properties [17]. For
video analytics at the edge, these questions are complicated,
since there are many different types of possible environment
changes and self-adaptations, with intricate implications on
a variety of system properties. Environment changes may
happen both at the infrastructure level and the application
level, and also self-adaptations are possible on both levels.

This paper presents the first detailed study on the adaptation
space of AI-assisted data protection for video analytics at the
edge. We use the example of a ML-based face-anonymization
pipeline which can be distributed between end devices and
edge nodes. Our contributions are as follows:

• We identify relevant parameters of the environment that
can change, possible self-adaptations that the system can
perform, and key system metrics.

• We perform extensive measurements in a heterogeneous
testbed to determine the effect of different environment
changes and self-adaptations on the identified metrics.

Such results are needed to have a solid basis for designing
the adaptation logic for AI-assisted data protection for video
analytics at the edge. Our work is a first step in this direction
and the results are potentially applicable to a wide field of
other possible scenarios beyond face anonymization.

II. MOTIVATING SCENARIO

We consider a use case of traffic monitoring in a smart city.
Cameras are installed across the city to monitor the traffic
on the streets. The video feed of each camera is streamed
to a nearby edge node, as shown in Fig. 1. Edge nodes
are computational resources deployed throughout the city, for
example in road-side units (RSUs) or smart lampposts. The
video feeds from the cameras are anonymized in the edge
nodes before they are forwarded to the cloud. Traffic control
experts use a cloud-based application to identify and analyze
potential traffic incidents, such as traffic jams.

P1: Preprocessing P2: Inferencing (Face detection) P3: Anonymization

Fig. 2. Face-anonymization application in the considered use case

In addition to the statically deployed cameras, also citizens’
smartphones may connect to a nearby edge node and stream
their video feeds to the edge node. In this case, the anonymiza-
tion of the video feed may happen either in the smartphone
or in the edge node.

The anonymization of video feeds is performed by a Video
Analytics Pipeline (VAP), schematically depicted in Fig. 2.
This face-anonymization pipeline consists of three phases,
where i) the video is pre-processed, ii) faces are detected in
the video frames, and iii) faces are made unrecognizable.

During the operation of the system, many changes are
possible. For example, assume that a smartphone is taking a
video feed and anonymizing it using a face-blurring technique
in real time. As more people join the scene, more faces need
to be detected and blurred in the video, which increases the
computational needs of the face-anonymization pipeline. If
the computational capacity of the smartphone is not sufficient
anymore, an adaptation is needed. One possibility is to offload
one or more phases of the face-anonymization pipeline to a
nearby edge node. Another possibility is to resort to a less
resource-consuming anonymization technique (e.g., drawing a
black rectangle over the faces instead of Gaussian blurring).
Which of these potential adaptations is most appropriate has
to be decided on the fly, depending on the given situation and
on the implications of potential adaptations.

III. ADAPTATION SPACE FOR DATA PROTECTION

Optimizing the performance of a VAP operating at the edge
is a major research topic. Various optimization objectives can
be considered, including execution time, latency, and inferenc-
ing accuracy. Optimization is carried out during either design
time or run time of an application, resulting in adaptations on
the infrastructure or application level. Accuracy plays a crucial
role for applications incorporating data protection mecha-
nisms, e.g., anonymization, that have to adhere to specific
privacy regulations like the GDPR. An application may have
to sacrifice potential performance benefits from optimization
strategies to achieve the necessary level of accuracy. The
heterogeneous and dynamic environment in edge computing
greatly increases the complexity of such optimization strate-
gies. Therefore, we need a better understanding of the main
levers for performance and data protection in each of the three
phases of the VAP, as depicted in Fig. 2.

Table I displays the most relevant adaptations we identified
and their impact on data protection and performance. For
application adaptations, the relevant phase of the VAP (P1-
P3) is indicated in the table. P0 is a special case of a pre-
runtime phase. Infrastructure adaptations can relate to any
phase, indicated by a *. The impact of an adaptation on data
protection and performance is shown by + (positive impact),
- (negative impact), or / (no significant impact).
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TABLE I
IMPACT OF ADAPTATIONS ON DATA PROTECTION AND PERFORMANCE

Adaptation Phase Data protection Performance

Compiled Programming Language P0 / +
Greyscaling P1 - +++
Adequate Video Resolution P1 + -
Frame Skipping P1 - +
Adequate AI-Model P2 +++ +
Batching P2 / ++
AI-Inference Chaining P2 ++ - - -
Sophisticated Anonymization P3 + -
Enable Dedicated Hardware * / +++
Overclocking * / ++
Migration * +/- ++
Offloading * - ++

The trigger for such adaptations can be a change on the
application level or on the infrastructure level. Application-
level triggers include changes in video content (e.g., the
number of people in the video, the size of their faces in the
video, the angle of faces to the camera, lightning conditions),
changes in the number of video feeds to process, or changes
in application requirements (e.g., different frame rate required
depending on the purpose of the video feed). Infrastructure-
level triggers include changes in the available hardware (e.g.,
mobile end devices connecting to or disconnecting from an
edge node) and in the trustworthiness of hardware (e.g., a
camera becoming compromised by a physical attack).

In the following, we describe the identified possible adap-
tations of each phase in more detail and reason about their
impact based on the example of Section II.

A. Adaptations of the pre-processing phase (P1)

Video data needs to be prepared for processing by a face
detection framework. This may involve encoding, decoding, or
transcoding the video, greyscaling the frames, or resizing each
frame. Greyscaling is needed since most object recognition
frameworks (e.g., TensorFlow) take greyscaled images as
input. Transforming the video can be a heavy computational
task, depending on how the video is recorded (frame rate,
resolution, codec, etc.). Manufacturers like Nvidia (NVEnc)
integrate dedicated chips into their hardware to facilitate
this task. Encoding, decoding or transcoding may have a
significant impact on overall performance of a VAP, but do
not affect data protection quality directly. While resizing and
greyscaling are computationally not very expensive (in the
sub-millisecond range per frame even on a Raspberry Pi4),
adaptations concerning resizing an image could negatively
affect data protection. This is because face detection may
produce less accurate results on the resized video, leading to
undetected and thus non-anonymized faces in the output video.

Adaptations changing the frame rate of an input video
should take the context and nature of the input video into
account. If (near-)real-time performance (and experience of
a user) is the goal, the frame rate should not go below 24
FPS. However, if this is not possible due to computational
limitations, skipping a given number of frames, i.e., providing

only each k-th frame to the face detection step, provides
a viable option for videos without abrupt changes. Frame
skipping assumes that a face detected in frame n is in the
same location in frames n + 1, . . . , n + k − 1 as well.
Thus, anonymization operates for each of these frames on the
location where a face was detected in frame n. For videos
with abrupt changes, this may degrade anonymization quality.

B. Adaptations of the inference phase (P2)

The performance of the second phase of the pipeline is
heavily dependent on the face-recognition framework itself
as well as on the inference model used by the framework.
In the context of AI-based inference tasks, performance is
not only related to processing speed but also to the accuracy
with which an object like a face is detected in an image. To
detect faces in a video, a framework looks at every frame
of the video, trying to infer if a face is present in the given
frame. The accuracy is mostly dependent on factors like face-
angle or lightning conditions in the picture [18]. A well-
trained model embedded in modern frameworks like e.g.,
TensorFlow will generally allow for high inference speed
with high accuracy. In some cases, inferencing may take
significantly longer if more than one face is present in the
frame. Such frameworks are not necessarily available and/or
optimized for each system architecture like e.g., ARM, x86,
x64. Differences in performance and accuracy can also occur
due to the usage of legacy versions of such AI frameworks.

There are several possibilities for adaptations concerning
inference that aim to improve accuracy and/or performance.
The most common practice in AI-based VAPs is batching.
Modern AI frameworks provide an API, allowing an appli-
cation to send multiple frames in one request and process
them in parallel. Adapting the batch size and frequency can be
considered viable adaptations because they do not negatively
affect data-protection quality, but may improve performance.
Changing the pre-trained model for inferencing is another
possibility. This adaptation becomes relevant if the analyzed
video is prone to dynamic changes as it may increase accuracy
and/or performance, but may also decrease data protection
quality if accuracy drops due to the model change.

In a scenario as described in Section II, accuracy may also
be improved if multiple inference steps are chained, e.g., first,
persons are detected in a video frame, then on the resulting
regions of the frame, face detection is performed. Such strate-
gies heavily affect overall performance, but may be necessary
to adhere to data protection regulations and policies. Another
adaptation is switching between implementations in different
programming languages. For example, Python is heavily used
for AI applications in the research community, but being an
interpreted language, applications written in Python generally
perform worse than using a compiled language like C or C++.

C. Adaptations of the anonymization phase (P3)

The third phase involves the actual anonymization of de-
tected faces in a video frame, i.e., a graphic overlay is drawn
over the face in the image. A face-detection framework returns
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a bounding box (an area inside an image) that corresponds
to, or covers the face detected inside a frame. This bounding
box is then used to draw an overlay onto the image. Both
performance and data protection quality depend on the desired
graphic nature of the overlay. One possibility is blurring the
face in an image by applying a Gaussian Blur Transformation
function to the image part cropped using the previously
described bounding box. Pixelating the face area can be con-
sidered an improvement in anonymization: the area is divided
into an n×m image-tile matrix and each tile is transformed
with e.g., Gaussian Blur. A simple alternative, with minimal
performance impact, maybe a more blunt approach, where the
cropped image part is just painted with a single color, resulting
in e.g., a white circle drawn ’over’ the face. However, similar
to resizing and greyscaling described in Section III-A, the
differences in execution times between these anonymization
strategies are small compared to the inferencing time.

D. Adaptations of the infrastructure

The execution time of a task often heavily depends on the
capabilities, e.g., CPU speed, architecture (ARM, x64, etc.),
or type of hardware (CPU, GPU, TPU, etc.) available, of the
device the task is running on. Executing all three phases on
the same device may limit the overall performance of the VAP.
A common approach is to decouple the phases of a VAP and
execute them separately on different devices. Offloading tasks
to the cloud or powerful edge nodes bears great potential to
minimize execution time, but comes with the downside of
increasing latency [19], [20]. Data locality requirements may
hinder offloading, potentially forcing a task that operates on
sensitive data, to run on specific premises [21].

Infrastructure adaptations may be useful in any of the three
phases. Phase 2 can benefit the most from infrastructure
adaptations in terms of performance, but may also suffer
from downsides like additional energy costs and/or labori-
ous human intervention. Infrastructure adaptations typically
do not directly influence accuracy, hence they can increase
performance without compromising data protection quality.
Activating (pre-installed and available on demand) dedicated
hardware like GPUs or Tensor Processing Units (TPUs) are
viable infrastructural adaptations. In virtualized environments,
migrating the inference component to a more powerful device
can be a beneficial adaptation. However, data locality aspects
and privacy policies need to be considered. Overclocking
hardware may also be a possible adaptation that should be
carried out carefully. Dedicated AI hardware like e.g., an
Nvidia Jetson device, provides interfaces and scripts to change
performance profiles (e.g., CPU voltage, fan speed, clock
speed) on the fly. However, these adaptations may also increase
energy consumption and potentially decrease hardware life
expectancy. A further adaptation possibility is to execute the
inference task on CPUs with different instruction sets. AI
frameworks, like TensorFlow, support special instruction sets
(Single Instruction Multiple Data) and other features that
increase performance.

TABLE II
DEVICES USED FOR THE EXPERIMENTS

Name CPU GPU RAM

Desktop PC AMD Ryzen 5600X@3.7GHz not used 32GB
Laptop Intel i7-7820HQ@2.9GHz not used 16GB
Intel NUC Intel i5-7260U@1.5GHz not used 16GB
Raspberry Pi4 ARM Cortex-A72@1.5GHz not used 4GB
Nvidia Jetson TX2 ARM Cortex-A57@2GHz Nvidia Pascal,

256 cores
8GB

IV. EVALUATION

We implemented the face-anonymization pipeline described
in Section II using Python 3.6, OpenCV 3.4 and TensorFlow
1.14. Parameters can be used to choose between different
versions of each phase of the pipeline. We performed a series
of experiments to evaluate the impact of different factors on
the performance of the face-anonymization pipeline. We per-
formed the experiments on a heterogeneous testbed consisting
of several different types of devices, shown in Table II. The
source code and the results are available online1.

Overall, the empirical findings reinforced the results of the
theoretical analysis of Section III. In the following, we present
some of the quantitative findings from the experiments.

Fig. 3 shows the impact of the used hardware on the VAP’s
performance. The fastest device (desktop PC) offers roughly
30 times higher performance than the slowest one (Raspberry
Pi). Thus, offloading computations to a more powerful device
offers huge potential for improving performance.

Fig. 4 shows the impact of the number of faces in the
video on the VAP’s performance. The results for the NUC are
shown; the results for the other devices are similar. Processing
a video with many faces leads to a performance loss of about
5% compared to a video containing a single face. This is an
example of the impact of an environmental factor. The system
has no influence on the number of faces in the video, but the
system may have to adapt to react to changes in the number
of faces in the video, to counteract the performance loss.

Fig. 5 shows the impact of different anonymization meth-
ods on the performance of the face-anonymization pipeline.
The performance difference between the fastest and slowest
anonymization method is about 2.8%. The difference is small
because the anonymization method only affects the perfor-
mance of the last phase of the face-anonymization pipeline.
The execution time of the face-anonymization pipeline is dom-
inated by the second phase (face detection), hence accelerating
the third phase has only limited effect.

Fig. 6 shows the impact of frame skipping on the perfor-
mance of the face-anonymization pipeline. If face detection is
performed only for every 5th frame, this leads to roughly a 5
times performance increase for the whole face-anonymization
pipeline. Hence, activating frame skipping or changing the
number of skipped frames is a very effective adaptation.

Fig. 7-8 show the impact of resizing the frames on the
measured performance and the accuracy reported by the AI

1https://github.com/clemenslachner/EdgeAIAdaptations
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Fig. 4. Throughput of the VAP on the NUC,
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of the VAP on the Raspberry Pi
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Fig. 7. Effect of resizing on the throughput of the
VAP on the Jetson board
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Fig. 8. Effect of resizing on the accuracy of the
VAP on the Jetson board

framework. Scaling the video to smaller sizes leads to a slight
increase in performance, but may lead to a dramatic loss in
accuracy. This underlines the importance of understanding the
effect of different adaptations on key metrics.

V. RELATED WORK

Privacy and security are critical aspects of video analytics
systems. Recent research identified edge computing as a key
enabler for privacy-sensitive systems dealing with real-time
video processing [22], [23]. Today’s hardware capabilities po-
tentially enable real-time video processing at the edge where,
typically, data originates. In the context of privacy in video-
based media spaces, Boyle et al. [24] proposed a framework
– a descriptive theory – that defines how one can think of
privacy while analyzing media spaces and their expected or
actual use. The framework explains three normative controls:
solitude, confidentiality and autonomy, yielding a vocabulary
related to the subtle meaning of privacy. A more technical
introduction to video surveillance is given by Senior in [25].
The paper briefly summarizes the elements in an automatic
video surveillance system, including architectures, followed
by the steps in video analysis, from preprocessing to object
detection, tracking, classification and behaviour analysis. Our
implementation builds on the high-level architecture described
in that paper, and adds AI-based video processing capabilities.
Chattopadhyay et al. demonstrate how the practical problem
of privacy invasion can be successfully addressed through

DSP hardware in terms of smallness in size and cost opti-
mization [26]. This is particularly useful for edge computing,
where computational resources may be scarce. Much research
focuses on encryption and anonymization of image and video
data. Other, more application-specific approaches, often in-
volve preprocessing of video streams to anonymize or obscure
specific parts of a frame. An example is the work of Schiff
et al. [27] that proposes Respectful Cameras, i.e., cameras
that respect the privacy preferences of individuals. Their real-
time approach preserves the ability to monitor activity while
obscuring individual identities. This is achieved by identifying
colored markers such as hats or vests, which are automatically
tracked by their system. The identities of people wearing, e.g.,
a colored vest, are obscured by adding a solid overlay over the
face in every frame.

Several authors proposed using adaptations to cope with
dynamic changes of edge computing systems. Breitbach et al.
combine different data placement and task scheduling policies
to adaptively react to changes in the system context [28]. Gand
et al. introduce a fuzzy controller for self-adaptive container
orchestration for edge devices [29]. Samir and Pahl propose
using adaptations for self-healing of edge cluster systems [30].
Wang and Xie develop an algorithm for the adaptive choice
of parameters in mobile augmented reality systems [31].

Previous approaches rely on carefully selected parameters
with known impact on the metrics of interest. As we have seen,
identifying the parameters and their impact for AI-assisted
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data protection for video analytics at the edge is a non-trivial
task, which has not been solved yet. Our work thus paves the
way towards effective adaptation algorithms for AI-assisted
privacy-preserving video analytics at the edge.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented preliminary results of the first sys-
tematic study of the adaptation space of AI-assisted data
protection for video analytics at the edge. Using a face-
anonymization pipeline as running example, we identified
several possible adaptations and analyzed their impact on
performance and data protection. We also implemented and
empirically evaluated several of the considered adaptations.
The results show a wealth of different adaptation options on
both the infrastructure and application level. The results also
show that the impact of these adaptations varies significantly.

In the future, we intend to extend our research to further
types of edge AI analytics applications and devices, as well
as with further relevant metrics. In addition, we plan to
transform the results to performance models that can be used
to automatically reason about possible adaptations at run time.
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